Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute dark matter. In the standard halo model of galactic dark matter, the velocity distribution of the bosonic dark matter field defines a characteristic coherence time τ c . Until recently, laboratory experiments searching for bosonic dark matter fields have been in the regime where the measurement time T significantly exceeds τ c , so null results have been interpreted by assuming a bosonic field amplitude Φ 0 fixed by the average local dark matter density. Here we show that experiments operating in the T ≪ τ c regime do not sample the full distribution of bosonic dark matter field amplitudes and therefore it is incorrect to assume a fixed value of Φ 0 when inferring constraints. Instead, in order to interpret laboratory measurements (even in the event of a discovery), it is necessary to account for the stochastic nature of such a virialized ultralight field. The constraints inferred from several previous null experiments searching for ultralight bosonic dark matter were overestimated by factors ranging from 3 to 10 depending on experimental details, model assumptions, and choice of inference framework.more » « less
-
null (Ed.)Solid-state battery technology is motivated by the desire to deliver flexible power storage in a safe and efficient manner. The increasingly widespread use of batteries from mass production facilities highlights the need for a rapid and sensitive diagnostic tool for identifying battery defects. We demonstrate the use of atomic magnetometry to measure the magnetic fields around miniature solid-state battery cells. These fields encode information about battery manufacturing defects, state of charge, and impurities, and they can provide important insights into battery aging processes. Compared with SQUID-based magnetometry, the availability of atomic magnetometers, however, highlights the possibility of constructing a low-cost, portable, and flexible implementation of battery quality control and characterization technology.more » « less
-
The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In particular, hot spots of charge storage are identified. In addition, the measurements reveal the capability to measure transient internal current effects, at a level of μA, which are shown to be dependent upon the state of charge. These effects highlight noncontact battery characterization opportunities. The diagnostic power of this technique could be used for the assessment of cells in research, quality control, or during operation, and could help uncover details of charge storage and failure processes in cells.more » « less
-
The nature of dark matter, the invisible substance making up over 80% of the matter in the universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles, or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: As nuclear spins move through the galactic dark-matter halo, they couple to dark matter and behave as if they were in an oscillating magnetic field, generating a dark-matter–driven NMR signal. As part of the cosmic axion spin precession experiment (CASPEr), an NMR-based dark-matter search, we use ultralow-field NMR to probe the axion-fermion “wind” coupling and dark-photon couplings to nuclear spins. No dark matter signal was detected above background, establishing new experimental bounds for dark matter bosons with masses ranging from 1.8 × 10 −16 to 7.8 × 10 −14 eV.more » « less
An official website of the United States government

Full Text Available